Let ay,as,...ay, (n > 3) be distinct complex numbers. Compute the sum
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where s, = (Z aZv) —ap, 1<k<n.
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5247: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Calculate

1 1
lim —T\L// hl(]. +6z) 1n(1—|—621)...1n(1+en1) dx.
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Solutions

5224: Proposed by Kenneth Korbin, New York, NY

LetTh =Ty =1,T3 =2, and Ty = Tn_1 +Tn_2 + Tn_3. Find the value of
y Iv
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Solution 1 by Arkady Alt, San Jose, CA

Noting that {71}, },>1 is an increasing sequence of positive integers we obtain:

Tn+1 — 14+ Tn—l + T’n—2
Tn Tn Tn
_ 1+Tn—1 + Tn—2 Tn—l

Tn Tn—l. Tn
< 141+1-1=3, n€N.

Hence,
T, T, T, T, T; _
;’1—:1<3 — 3ZE<3_Z?”EN:>3_Z<3% «— T,<3" ' neN.
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and therefore, by the comparison test for series, Z Tt is convergent for any
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x € (0, §> because for such z it is bounded by ;(Sx)”_l =1"%
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and therefore, for r = — < 3, we obtain
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Solution 2 by Albert Stadler, Herrliberg, Switzerland

We first claim that 1 < T}, < 2"~ ! for n > 1. Indeed this is true for n = 1,2, and 3 and

1< T, =Ty 14Ty o+T, 5 <2n24on=34on=4 o gn=2 4 gn=3 9n=3 _ on—1 g claimed.
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So, S = E — is convergent and
7Tn
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S = —:__|__+ _|_Z Th1+Th o+T, 3
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Solution 3 by Adrian Naco, Polytechnic University, Tirana, Albania
T,

Let us pose, a, = —Z, Ty = 0. We prove by induction that, T, <Tp41 < 275,.
™

T, < Tn+1 =Th+ Ty 1+Th o <2T, 1+2T, o+ 2T, 3=2T,.

Thus, it implies that,
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